CHAPTER 5

ATOMIC STRUCTURE MCQs

Q.1	Splitt	ting of spectral lines when a	atoms are su	abjected	d to strong			
electr	ric field	is called						
	(a)	Zeeman effect	(b)	Stark	effect			
	(c)	Photoelectric effect	(d)	Con	npton effect			
Q.2	The v	velocity of photon is						
	(a)	independent of its wavel	ength					
	(b)	depends on its waveleng	th					
	(c)	equal to square of its am	plitude					
	(d)	depends on its source						
Q.3	The r	nature of positive rays depe	nd on					
	(a)	the nature of electrode						
	(b)	the nature of discharge t	ube					
	(c)	the nature of residual gas	S					
	(d)	all of the above						
Q.4	The v	wave number of the light en	nitted by a	certain	source is 2 x			
106 n	n. The v	wavelength of this light is						
	(a)	500 nm		(b)	500 m			
	(c)	200 nm		(d)	5 x 10–1 m			
Q.5	Ruth	erford's model of atom faile	ed because					
	(a)	the atom did not have a nucleus and electrons						
	(b)	it did not account for the	e attraction	betwee	n protons and			
neutr	ons							
	(c)	it did account for the sta	bility of the	atom				
	(d)	there is actually no space	e between t	he nucl	eus and the			
electr	rons							
Q.6	Bohr	's model of atom is contrad	icted by					
	(a)	Planck's quantum theory	/					
	(b)	Pauli exclusion principle	2					
	(c)	Heisenberg uncertainty p	principle					
		1						

	(d)	All of the above					
Q.7	` ,	ım number value for 2p	orbital	s are			
	(a)	n = 2, l = 1		(b) $n = 1, l = 2$			
	(c)	n = 1, l = 0		(d) $n = 2, l = 0$			
Q.8	` ′	ground state of an atom	, the ele				
	(a)	in the nucleus	(b)	in the second shell			
	(c)		` ,	farthest from the nucleus			
Q.9	, ,		, ,	entering electron goes into			
	(a)	7f	(b)	7s			
	(c)	7p	(d)	7d			
Q.10	, ,	ls having same energy a	are calle	ed			
	(a)	hybrid orbitals		valence orbitals			
	(c)	degenerate orbitals	(d)	d-orbitals			
Q.11	The e/1	m value for the positive		maximum for			
	(a)	hydrogen	(b)	helium			
	(c)	nitrogen	(d)	oxygen			
Q.12	Neutro	on was discovered by C	hadwicl	k in			
	(a)	1935	(b)	1930			
	(c)	1932	(d)	1934			
Q.13	The ve	elocity of photon is					
	(a)	equal to square of its	amplitud	de			
	(b)	independent of its war	velengtl	ı			
	(c)	Equal to its wave num	nber				
	(d)	equal to the velocity of	of light				
Q.14	Quantum number values for 3p orbitals are						
	(a)	n = 0, l = 3	(b)	n = 3, l = 1			
	(c)	n = 2, l = 1	(d)	n = 1, l = 3			
Q.15	The ra	dius of first orbit of hyd	drogen a	atom			
	(a)	0.329 Ao	(b)	0.429 Ao			
	(c)	0.529 Ao	(d)	0.229 Ao			
_			posed o	of few fundamental particles			
which	are in n	umber					
	(a)	2.	(b)	3			

	(c)	4	(d)	5	
Q.17	Whic	ch scientist gave the nan	ne of ele	ctron to	the cathode rays
	(a)	Planck	(b)	Einst	ein
	(c)	Stoney	(d)	Bohr	
Q.18	The c	divisibility of atom was	showed	by	
	(a)	Stoney	(b)	J.J. Tl	nomson
	(c)	Millikan	(d)	Ruthe	erford
Q.19	The r	nature of cathode rays re	emains tl	he same	e irrespective of the
materi	ial used	d for			_
	(a)	gas	(b)	catho	de
	(c)	glass	(d)	electr	rode
Q.20	Mass	of electron is			
	(a)	9.1 x 10–31 kg	(b)	9.10	9 x 10–32 gm
	(c)	8.1 x 10–31 g	(d)	9.1 x	x 10–31 mg
Q.21	The c	charge on an electron is			
	(a)	1.602 x 10–19 c		(b)	1.602 x 10–18 c
	(c)	1.602 x 10–19 c		(d)	1.602 x 10–21 c
Q.22	The c	charge on the proton is			
	(a)	+ 1.602 x 10–19 c	(b)	zero	
	(c)	– 1.602 x 1019 c		(d)	1.602 x 10–19 c
Q.23	The c	charge on the neutron is			
	(a)	1.602 x 10–19 c		(b)	zero
	(c)	– 1.602 x 10–19 c	(d)	+ 1.6	502 x 10–19 с
Q.24	The c	calculated e/m value of	electron	is	
	(a)	1.602 x 1019 c kg-1	(b)	1.75	588 x 10–11 c kg–1
	(c)	1.7588 x 10–13 c kg	-1 (d)	1.75	59 x 109 c kg
Q.25	The 1	mass of proton is			
	(a)	9.11 x 10–31 kg		(b)	1.676 x 10–27 kg
	(c)	1.60 x 10–19 kg		(d)	1.675 x 10–27 kg
Q.26	The 1	mass of neutron is			_
	(a)	1.675 x 10–27 kg	(b)	1.67	5 x 10–25 kg
		9.11 x 10–31 kg	. ,		1.60 x 10–19 kg
0.27	, ,	charge on electron was o	determin		C

	(a)	J.J. Thomson	(b)	Millil	kan
	(c)	Rutherford	(d)		
Q.28	Alpha	a particles are identical	, ,		
	(a)	hydrogen atoms		(b)	helium atoms
	(c)	helium nuclei	(d)	fast r	noving electrons
Q.29	Bomb	pardment of Beryllium	with alp	ha parti	cles generates
	(a)	proton	(b)	neutr	on
	(c)	electron		(d)	positron
Q.30 upon	The c	colour of the glow produ	aced in	the disc	harge tube depends
	(a)	gas	(b)	electr	rodes
	(c)	composition of gas	(d)	press	ure
Q.31	Wher	the pressure of the gas	in disc	harge tu	be is reduced, which
of the	follow	ing becomes more pror	ninent		
	(a)	gas glows	(b)	gas io	onizes
	(c)	a discharge takes pla	ce	(d)	gas conducts
electri	city				
_		stein discovered that be			
of ray	s are pi	roduced in the discharge			
	(a)	1	, ,	beta r	•
	(c)	1	` ′	gamn	•
Q.33	The e	m value for the positive	e rays i	in the dis	scharge tube depends
upon					
	` ′	nature of electrode u	se		
	(b)	nature of gas used			
	(c)	composition of the g	as		
	(d)	pressure			
Q.34		listance between the tw	•		
	(a)	wave number	(b)	frequ	•
	(c)	wavelength	(d)	ampli	itude
Q.35		value of Planck's consta			7 10 24 7
	(a)	6.625 x 10–34 cal	(b)		5 x 10–34 J sec
	(c)	6.625 x 10–34 kJ	(d)	6.62	5 x 10–34 k cal

Q.36	In the	In the Bohr's model of atom the electron in an energy level emits					
or abs	orbs ei	nergy only when it					
	(a)	remains in the san	ne energy 1	level			
	(b)	dies out					
	(c)	changes its energy	y level				
	(d)	jumps away					
Q.37	The ϵ	energy associated wit	th an electi	on resolving in first orbit is			
	(a)	– 2.178 x 10–18 k	J/mol				
	(b)	– 1313.31 k J/mol					
	(c)	-328.32 k J/mol					
	(d)	-82.08 k J/mol					
Q.38	The r	regions of spectrum a	ıre				
	(a)	three	(b)	seven			
	(c)	eight	(d)	five			
Q.39	The dispersion of the components of white light when it is passed						
throug	gh prisi	m is called					
	(a)	rainbow	(b)	light pattern			
	(c)	refraction	(d)	spectrum			
Q.40	Whic	ch of the following co	olours has	the shortest wavelength in			
the vis	sible sp	pectrum of light					
	(a)	red	(b)	blue			
	(c)	violet	(d)	green			
Q.41	Whic	ch of the following co	olours has	the longest wavelength in the			
visible	e spect	rum of light					
	(a)	red	(b)	blue			
	(c)	violet	(d)	green			
Q.42	A spe	ectrum containing wa	avelength o	of all wavelengths is called			
	(a)	continuous	(b)	discontinuous			
	(c)	line	(d)	atomic			
Q.43	A spe	ectrum showing only	certain co	lours of light is called			
	(a)	continuous	(b)	line			
	(c)	discontinuous	(d)	band			
0.44	The v	wavelength range of	visible spe	ctrum is			

	(a)	400–750 nm	(b)	300–400 nm
	(c)	350–600 nm		
Q.45				v region) are produced
		n jumps from higher		
	(a)	1st orbit	(b)	2nd orbit
	(c)	3rd orbit		4th orbit
Q.46	The s	spectral lines of Balme	er series (v	visible region) are produced
when	electro	on jumps from higher	orbit to	
	(a)	1st orbit	(b)	2nd orbit
	(c)	3rd orbit		4th orbit
Q.47	The s	spectral lines of Pasch	en series ((visible region) are produced
when	electro	on jumps from higher	orbit to	
	(a)	1st orbit	(b)	2nd orbit
	(c)	3rd orbit	(d)	4th orbit
Q.48	The s	spectral lines of Brack	et series (visible region) are produced
when	electro	on jumps from higher	orbit to	
	(a)	1st orbit	(b)	2nd orbit
	(c)	3rd orbit	(d)	4th orbit
Q.49	A dua	al character of matter	particles i	n motion was postulated by
	(a)	De-Broglie	(b)	Planck
	(c)			Schrodinger
Q.50	If an	electron is moving wi	th a veloc	ity of 2.188 x 106 m/s then
its wa	veleng	th will be		
	(a)	0.33 x 106 nm	(b)	0.33 x 10–2 nm
	(c)	0.33 nm	(d)	0.22 nm
Q.51	If a s	tone of 1gm is many v	with a velo	ocity of 10m/s then its
wavel	length v	will be		
	(a)	6.65 x 10–30 m	(b)	6.65 x 10–25 m
	(c)	6.65 x 10–28 m	(d)	6.65 x 10–12 m
Q.52	The s	space around the nucle	eus where	the probability of finding
the ele	ectron i	is maximum is called		
	(a)	an orbital	(b)	an orbit
	(c)	energy level	(d)	a shell

Which	h orbital has dumb–bel	1 shape	
(a)	s-orbital	(b)	p–orbital
(c)	d-orbital	(d)	f–orbital
Which	h of the following quar	ntum nu	mbers describes energy of an
n in an	atom		
(a)	principal quantum	(b)	azimuthal quantum
(c)	magnetic quantum	(d)	spin quantum
Which	h of the following quar	ntum nu	mbers describes shape of an
n in an	atom		
(a)	principal quantum	(b)	azimuthal quantum
(c)	magnetic quantum	(d)	spin quantum
The d	egenerate orbital in p-	subshel	l is
(a)	2	(b)	3
(c)	5	(d)	7
When	4p orbital is complete	the ente	ering electron goes into
(a)	4d	(b)	4f
(c)	5s	(d)	5p
x + l	value for 3d will be		
(a)	3	(b)	4
(c)	5	(d)	6
Maxii	mum number of electro	ons in 3f	f orbitals is
(a)	2	(b)	zero
(c)	6	(d)	14
Maxii	mum number of electro	ons in M	I–shell is
(a)	2	(b)	8
(c)	18	(d)	32
An or	bital can have maximu	m electi	rons
(a)	2	(b)	8
(c)	18	(d)	6
n + l	value for 4f will		
(a)	2	(b)	5
(c)	7	(d)	9
	(a) (c) Which on in an (a) (c) Which on in an (a) (c) The d (a) (c) When (a) (c) X + l (a) (c) Maxin (a) (c) Maxin (a) (c) An or (a) (c) n + l (a)	(a) s-orbital (c) d-orbital Which of the following quarton in an atom (a) principal quantum (c) magnetic quantum Which of the following quarton in an atom (a) principal quantum (c) magnetic quantum (c) magnetic quantum The degenerate orbital in p- (a) 2 (c) 5 When 4p orbital is complete (a) 4d (c) 5s x + l value for 3d will be (a) 3 (c) 5 Maximum number of electro (a) 2 (c) 6 Maximum number of electro (a) 2 (c) 18 An orbital can have maximum (a) 2 (b) 18 An orbital can have maximum (a) 2 (b) 18 An orbital can have maximum (a) 2 (b) 18 An orbital can have maximum (a) 2 (b) 18 An orbital can have maximum (a) 2 (b) 18 An orbital can have maximum (a) 2 (b) 18 An orbital can have maximum (a) 2 (b) 18 An orbital can have maximum (a) 2	(c) d-orbital (d) Which of the following quantum number on in an atom (a) principal quantum (b) (c) magnetic quantum (d) Which of the following quantum number of electrons in Maximum number of 4 will (a) 2 (b) (c) 18 (d) An orbital can have maximum electrons in Maximum number of 4 will (a) 2 (b) (c) 18 (d) (d) (e) 18 (d) (f) 19 (d) (f) 18 (d) (f) 19 (d) (

Q.63	When a spectrum of light is formed by the radiation given off by							
a subs	tance i	t is called						
	(a)	line spectrum	(b)	continuous spectrum				
	(c)	emission spectrum	(d)	absorption spectrum				
Q.64	Neuti	ron was discovered by						
	(a)	Chadwick	(b)	Bohr				
	(c)	J.J. Thomson	(d)	Einstein				
Q.65 they	Catho	ode rays can drive a sm	all padd	le wheel which shows that				
	(a)	are positively charge	ed					
	(b)	possess momentum						
	(c)	do not possess mome	entum					
	(d)	none of these						
Q.66	Slow	neutrons are generally	more ef	fective than fastness for the				
purpo	se of							
	(a)	effusion	(b)	fission				
	(c)	penetration	(d)	absorption				
Q.67	The v	wavelength associated v	with the	moving stone				
	(a)	(a) can be measured by many methods						
	(b)) cannot be measured by any method						
	(c)	can be measure by so	ome me	thod				
	(d)	none of these						
Q.68	Radius of orbit of an electron and velocity of electron are							
	(a)							
	(b)	inversely proportional to each other						
	(c)	independent to each	other					
	(d)	none of these						
Q.69	The v	values of magnetic quar	ntum nu	mber give us information				
about	the nu	mber of orbitals in a						
	(a)	small shell	(b)	orbit				
	(c)	subshell	(d)	none of these				
Q.70	Whic	h of the following term	s are us	ed for the number of positive				
charge	es on th	ne nucleus of an atom						

	(a)	atomic number	(b)	atomic mass
	(c)	nuclear charge	(d)	atomic charge
Q.71	The un	certainty principle was	stated b	У
	(a)	de Broglie	(b)	Heinsenberg
	(c)	Einstein	(d)	Schrodinger
Q.72	When a	a pressure in a discharg	e tube is	reduced, which of the
followi	ing pher	nomenon becomes very	promin	ent
	(a)	gas conducts electricit	y	
	(b)	a discharge takes place	e	
	(c)	gas ionizes		
	(d)	gas glows		
Q.73	Atom b	omb is based on the pr	inciple o	of
	(a)	nuclear fusion		
	(b)	nuclear fission		
	(c)	fusion and fission both	ı	
	(d)	radioactivity		
Q.74	A spinr	ning electron creates		
	(a)	magnetic field	(b)	electric field
	(c)	quantum field	(d)	none of these
Q.75	The vo	lume of space in which	there is	95% chance of finding an
electro	n is			
	(a)	orbit	(b)	atomic orbital
	(c)	degenerate orbital	(d)	quantized orbital
Q.76	Planck?	's equation is		
	(a)	E = mc2	(b)	E = hv
	(c)	E = hv2		(d) $E = mc$
Q.77	In an at	tom, the electrons		
	(a)	are stationary in variou	us energ	y levels
	(b)	are distributed in three	dimens	sional charge cloud around
the nuc	eleus			
	(c)	embedded in space arc	ound the	nucleus
	(d)	revolve around the nuc	cleus at	random
Q.78	The ma	ass number of an eleme	nt is equ	ıal to

- (a) number of electrons in an atom
- (b) number of protons and neutrons in the nucleus
- (c) number of protons in the nucleus
- (d) number of neutrons in the nucleus
- Q.79 The energy of bounded electron in H atom is
 - (a) positive

(b) negative

(c) zero

- (d) none of these
- Q.80 Quantum number which has symbol "n" is called
 - (a) principal quantum
- (b) Azimuthal quantum
- (c) Spin quantum
- (d) Magnetic quantum

ANSWERS

				111101	
Question	1	2	3	4	5
S					
Answers	b	a	c	a	c
Question	6	7	8	9	10
S					
Answers	c	a	c	c	c
Question	11	12	13	14	15
S					
Answers	a	c	d	b	c
Question	16	17	18	19	20
S					
Answers	b	c	b	d	a
Question	21	22	23	24	25
S					
Answers	c	a	b	b	b
Question	26	27	28	29	30
S					
Answers	a	b	С	b	c
Question	31	32	33	34	35
S					
Answers	С	c	b	С	b

Question	36	37	38	39	40
S	30	37	30	37	40
Answers	С	b	С	d	c
Question	41	42	43	44	45
S	41	42	43	44	45
	0	0	b	0	0
Answers	a	a 47	_	a 40	a 50
Question	46	47	48	49	50
S	1		1		
Answers	b	С	d	a	c
Question	51	52	53	54	55
S					
Answers	a	a	b	a	b
Question	56	57	58	59	60
S					
Answers	b	С	С	b	c
Question	61	62	63	64	65
S					
Answers	a	С	С	a	b
Question	66	67	68	69	70
S					
Answers	b	b	b	С	a
Question	71	72	73	74	75
S					
Answers	b	b	b	a	b
Question	76	77	78	79	80
S					
Answers	b	b	b	b	a