CHAPTER 6

CHEMICAL BONDING MCQs

Q.1	An ioni	ic compound A+ B– is most likely to be formed when The ionization energy of A is high and electron affinity
of B is	` '	
	(b)	The ionization energy of A is low and electron affinity of
B is hi	` ,	
·	(c)	Both the ionization energy and electron affinity of B are
high	` '	·
	(d)	Both the ionization energy of A and electron affinity of B
are low	V	
Q.2	The nu	mber of bonds in nitrogen molecules
	(a)	one σ and one π
	(b)	one σ and two π
	(c)	three sigma only
	(d)	two σ and one π
Q.3	Which	of the following statements is not correct regarding
bondin	g molec	cular orbitals?
	(a)	bonding molecular orbitals possess less energy than
atomic	orbitals	from which they are formed
	(b)	bonding molecular orbitals have low electron density
betwee	en the tw	vo nuclei
	(c)	every electron in the bonding molecular orbitals
contrib	outes to 1	the attraction between atoms
	(d)	bonding molecular orbitals are formed when the electron
waves	undergo	constructive interference
Q.4	Which	of the following molecules has zero dipole moment?
	(a)	NH3 (b) CHCl3
	(c)	H2O (d) BF3
Q.5	Which	of the hydrogen halides has the highest percentage of

ionic character

	(a)	HF	(b)	HB	p
	(c)	HCl	(d)	HI	<u>.</u>
Q.6	` ′		` '		paired electrons in anti-
_		cular orbitals	uics mai	5 սոբ	anca electrons in anti-
UUIIGIII	(a)	O2	(b)		N2
	(a) (c)	Br2	(d)		F2
0.7	` '	of the following involv	` /		
Q.7		Li3N	(b)	Na	- ·
	(a)	NC13	(d)		O2
0 8	` /		` /		
Q.8		of the following involv		KC	
	(a)	KF CH4	` /		
Ω	(c) Which	CH4	(d)		MgCl2
Q.9		of the following molec			_
	(a)	CO2 SO2	(b) (d)		CS2 CCl4
Q.10	(c)	as a net dipole moment	` /		
_	1123 118 1t, becau	-	wille b	061,7	nas zero dipole
mome	(a)	H2S molecule is linea	r while	R _₽ F′) is anoular
	(a) (b)	H2S molecule is angu			_
	(c)	Fluorine has more elec			
	(d)	Be is more electroneg			
O 11		of the following ions h			
Q.11	(a)	Na+	_	(b)	K+
	` ′	Mg2+	(d)		Al3+
O 12	, ,		` ′		
Q.12		of the following bonds		_	
	(a)	H–Se	(b)	P-(
0.12	(c)	H-Cl	(d)	N–	Cl
Q.13		one has the least bond			CHA
	(a)	NH3	(a)		CH4
0.14	(c)	H2O	(d)	BF.	3
Q.14		nate covalent bonds are	ciorme	ı by	
	(a)	sharing of electrons			
	(b)	donation of electrons			

	(-)	4			
	` '	transference of electro	ons		
~	(d)	none of these	_		
_		of the following mole	cules wo	ould	be expected to have
zero di	ipole me	oment?			
	(a)	H2S	(b)	PF	73
	(c)	TeF6	(d))	H2O
Q.16	The bo	and formed between the	e elemer	nts o	f low ionization energy
and ele	ements	of high electron affinity	y is		
	(a)	ionic	(b)	cov	alent
	(c)	metallic		(d)	coordinate
Q.17	, ,	de ways overlap of two	–p orbit	tals t	to form a bond is called
	(a)	sigma bond	(b)	pi	(π) bond
	(c)	ionic bond	(d)	cov	alent bond
Q.18	The he	ead overlap of p-orbital	ls of two	o ato	ms give rise to bond
called		• •			
	(a)	sigma bond	(b)	pi	(π) bond
	(c)	ionic bond	, ,	-	valent bond
Q.19			` /		onegative element with
(, _ ,	(a)	high ionization energy			•
(EA)	(4)	mgm romzacrom emorg,) (111) w	10 10	ov order on arrining
	(b)	low ionization energy	ı (IF) an	d hi	oh electron affinity
(EA)	(0)	10 W 10 III Zation energy	(IL) un	111	gn electron arranty
	(c)	low ionization energy	and lov	w ele	ectron affinity
	(d)	high ionization energ			
0.20	` /	element would be the			
Q.20		high I.E. and low E.A			· ·
		_			_
O 21		low I.E. and low E.A.		-	
_		of the following substi	ances na	as un	e least ionic character in
its bon		OC14	/1 \		IZC1
	(a)	CC14	(b)		KCl
	(c)	BeCl2	(d)		MgC12
Q.22	Which	of the following best of	describe	s ior	nization energy?

	(a)	energy needed to rem	ove the	e most loosely bound electror			
from it	s groun	d state					
	(b)	it decreases from left	to righ	t across a period			
	(c)	it increases down the	periodi	ic table			
	(d)	it is represented by x	+ e	\rightarrow x-+ energy			
Q.23	Which	one of the following c					
attribu	ted to ic	onic substances		•			
	(a)	high melting point	(b)	deform when struck			
	(c)	crystalline in solid sta	ite				
	(d)	well defined three dir	nensio	nal structure			
Q.24	Which	of the following bond	is less	polar?			
	(a)	B-Cl	(b)	C–Cl			
	(c)	H–I	(d)	C–I			
Q.25	Which	type of the orbital hyb	ridizati	ion and geometry is used by			
the cer	ntral ato	m of NH2-?					
	(a)	sp2 hybridization and trigonal planar					
	(b)	sp hybridization and t	etrahed	dral geometry			
	(c)	sp2 hybridization and	trigon	al planar			
	(d)	sp3 hybridization and	tetrahe	edral geometry			
Q.26	Which	of the following comp	ounds	has most likely been formed			
by cov	alent bo	onding of atoms					
	(a)	CaF2	(b	o) MgO			
	(c)	SiH4	(d	l) NaCl			
Q.27	Identif	y the compound below	which	has bonds formed by an			
		and p-orbitals					
	(a)	BF3	(t	o) BeCl2			
	(c)	NH3	(d	d) H2O			
Q.28	The mo	ost electronegative of the	hese gr	roup I element is			
	(a)	Na	(b)	K			
	(c)	Li	(d)	Cs			
Q.29	The typ	pe of bonding in HBr is	S				
	(a)	ionic	(b)	polar covalent			
	(c)	non-polar covalent	(d)	coordinate covalent			

Q.30	Whiel	h of the following sta	atement is r	not corr	ect		
Q .50	(a)	_					
	(a) (b)		sigma bond is weaker than a pi bond sigma bond is stronger than a pi bond				
	(c)	double bond is stro	•	-			
	(d)	double bond is sho	•	_			
O 31		h of the following m		_			
Q.31	(a)	CH4	(b)		H3		
	(a) (c)	H2O	(d)	C2H4			
Q.32	, ,	ond angle in water is	, ,	C2114	•		
Q.32	(a)	109–50	(b)	10/	4.50		
	(a) (c)	107.0o	(d)	120			
Q.33		g the formation of cl	` '				
the sys		g the formation of ci		id, the	potential energy of		
uic sys	(a)	decreases	(b)	increa	Ses		
	` '	does not change	(0)	(d)	none of these		
Q.34		molecule has		(u)	none of these		
Q.5-i		no lone pair	(b)	one lo	ne pair		
		two lone pairs	(d)		of these		
Q.35		molecule has	(u)	none	or these		
Q .55		no lone pair	(b)	one lo	ne pair		
		two lone pairs	(d)		lone pairs		
Q.36		H3 the covalent bon			-		
Q. 50	(a)	s–sp overlap	(b)		overlap		
	, ,	s–sp3 overlap		_	sp2 overlap		
Q.37	, ,	h of the following is		_	p2 overlap		
Q.57	(a)	Mg	(b)	Be			
	(c)	Sr	(d)	Ca			
Q.38	` ′		` /		compounds generally		
have	11000		ompounds	, 101110	compounds generally		
	(a)	low melting points	s and low be	oiling p	points		
	(b)	low melting points		- -			
	(c)	high melting point	•	•	•		
	(d)	high melting point	•	_	-		

Q.39 called	The attractive force that holds atoms together in a molecule is				
	(a)	force of attraction	(b)	electrostatic force	
	(c)	bond	(d)	chemical bond	
Q.40	Which	of the following bonds	will be	formed between alkali	
metals	and halo	ogens			
	(a)	ionic	(b)	covalent bond	
	(c)	metallic bond	(d)	coordinate covalent bond	
Q.41	The box	nd formed between the	atoms b	by mutual sharing of	
electro	ns is				
	(a)	ionic	(b)	coordinate covalent bond	
	(c)	covalent	(d)	metallic	
Q.42	A chem	nical bond formed betw	een two	o similar atoms is purely	
	(a)	ionic	(b)	covalent	
	(c)	metallic		(d) coordinate	
Q.43	On the	basis of VSEPR model	the geo	ometry of BeCl2 is	
	(a)	linear	(b)	trigonal	
	(c)	tetrahedral	(d)	angular	
Q.44	On the	basis of VSEPR theory	, a mole	ecule with three bond pair	
and no	lone pa	ir of electrons will have	e a struc	cture	
	(a)	linear	(b)	trigonal planar	
	(c)	tetrahedral	(d)	trigonal pyramidal	
Q.45	The geo	ometry of NH3 on the l	oasis of	VSEPR model is	
	(a)	trigonal planar	(b)	trigonal pyramidal	
	(c)	tetrahedral	(d)	linear	
Q.46	In which	ch of the following theo	ories the	hybridization is considered	
	(a)	VSEPR	(b)	Lewis	
	(c)	molecular orbital	(d)	valence bond	
Q.47	The ang	gle between 3 sp2 hybr	id orbita	al is	
	(a)	900	(b)	120o	
	(c)	130o	(d)	180o	
Q.48	The unl	hybridized "p" orbital i	in sp2 h	ybridization is	
	(a)			in the same plane	

	(c)	perpendicular to sp2	orbitals			
	(d)					
O.49	` ′	h of the following theo	ries give	es the i	dea of deloca	lization
of elec		\mathcal{E}	C			
		Lewis theory	(b)	VSI	EPR theory	
		valence bond theory			•	theory
_		andency of an atom to				•
ILSCII I		electron affinity		(h)	electroneg	rativity
				, ,	_	•
O 51		dipole moment sy needed to remove an			-	
called	Lileig	gy needed to remove an	i electroi	11 110111	its gaseous a	10111 18
	(a)	electron affinity		(b)	ionization	energy
	, ,	lattice energy	, ,		_	
Q.52	A bor	nd having partial positi	ve and n	egativ	e charges is	
	(a)	ionic	(b)	cova	lent	
	(c)	polar covalent	(d)	non	–polar covale	nt
Q.53	A bor	nd formed by the linear	overlap	of ato	mic orbitals i	s called
	(a)	sigma	(b)	ioni	c	
	(c)	pi	(d)	pola	r	
Q.54	Whic	h of the following elem	nents is t	he mo	st electronega	ative
	(a)	Li	(b)	F		
	(c)	O	(d)	Cl		
Q.55	Some	covalent compounds of	lissolve	in wat	er due to	
	(a)	hydrolysis	(b)	hyd	ration	
	(c)	hydrogen bonding	(d)	met	allic bonding	
Q.56	Whic	h of the following com	pounds	will ha	ive the lowest	boiling
point?						
	(a)	PH3	(t)	ASH3	
	(c)	NH3	(d	l)	SbH3	
Q.57	Whic	h of the following mole	ecules ha	as a co	ordinate bond	1?
	(a)	NH4Cl	(b)	Na	Cl	
	(c)	HCl	(d)	AlC	213	

Q.58	The h	half of the difference	between the	ne number of electrons i			
bondi	ng MO	and antibonding Mo	O is called				
	(a)	molecule order	(b)	bond order			
	(c)	proton order	(d)	electron order			
Q.59	The b	ond order for He2 n	nolecule is				
	(a)	zero	(b)				
	(c)	1	(d)	2			
Q.60	The b	ond order for H2 is					
	(a)	zero	(b)				
	(c)	1	(d)	1.5			
Q.61	The b	ond order in N2 mo	lecule is				
	(a)	zero	(b)	1			
	(c)	2	(d)	3			
Q.62	The b	ond order in O2 mo	lecule is				
	(a)	1	(b)	2			
	(c)	3	(d)	zero			
Q.63	Which one of the following is diamagnetic						
	(a)	B2	(1	b) C2			
	(c)	N2	(d	l) O2–			
Q.64	Whic	th one of the following	ng molecul	e is paramagnetic			
	(a)	B2	(1	b) C2			
	(c)	N2	(d	l) F2			
Q.65	Whic	th of the following ic	ns is diam	agnetic			
	(a)	O	(b)	0			
	(c)	O	(d) 1	V			
Q.66	Pi bo	nd consists of two re	egions of el	ectron cloud density			
	(a)	along the bond ax	is				
	(b)	along and perpend	dicular to b	ond axis			
	(c)	above and below	the bond ax	Kis			
	(d)	none of these					
Q.67	Sigm	a bond consists of or	ne region o	f electron density			
	(a)	along the bond ax	is				
	(b)	along and perpend	dicular to b	ond axis			

	(c)	above and below the	e hond a	vic	
	(d)	none of these	e bond a	AIS	
0.69	` '		ia aymm	atrical a	long the bond evic in
Q.68		lectron cloud density i			
	(a)	•	(b)	pi bo	illu
	(c)	•			
0.60	(d)	neither sigma nor production aloud density		mmatric	al along the bond
Q.69		lectron cloud density i	is not syr	mmeurc	an along the bolld
axis in		siama hand	(b)	ni bo	nd
		sigma bond		pi bo	illu
		both sigma and pi b			
0.70	(d)	neither sigma nor pr	i dona		
Q.70		ent bonds are	1		
		rigid and directional			
	(b)	O			
	(c)	neither rigid nor dir			
0.71	(d)	non-rigid and direc	tional		
Q.71		bonds are	1		
		rigid and directional			
		rigid and non-direc			
	(c)	O			
	(d)	non-rigid and direc			
_		n of the following stat	ements i	s correc	t regarding the
covale	nt com	pounds			
	(a)	covalent compound			
	(b)	covalent compound	s exhibit	t isomer	ism
	(c)	-			
	(d)	covalent compound	s are ins	oluble i	n non-polar solvents
Q.73	The C	—C bond length in eth	iane (C2)	H6) is	
	(a)	154 pm		(b)	133 pm
	(c)	120 pm		(d)	105 pm
Q.74	The C	—C bond length in eth	iene (C2)		
	(a)	•		(b)	133 pm
		120 pm		(d)	105 pm
0.75	The C	E—C bond length in eth	ivne is		

	(a)	154 pm		(b)	133 pm	
	(c)	_		(d)	-	
Q.76	The ato	omic radii of the elemen	nts ha	ve a ge	eneral trend of	f
		riodically throughout th				
	(a)	group		per	iod	
	(c)		(d)	ser		
Q.77	Which	of the following atom:	has th	e short	test atomic rad	dius
	(a)	N	(b)	F		
	(c)	0	(d)	В		
Q.78	` /	If of the single bond lea	ngth b	etwee	n two atoms ii	n a
_	ile is cal	•	U			
	(a)	ionic radius of an elen	nent			
	` ,	covalent radius of an o	eleme	nt		
	` /	both ionic and covaler				
	(d)	2.4				
O.79	` /	ule is not followed in the	ne for	mation	of	
	(a)	CH4		b)	NF3	
	(c)	BC13	`	d)	H2O	
Q.80	` /	the atom with the large	`	,		<u>)</u>
_	ing aton				23	
	(a)	N	(b)	P		
	` /	AS	(d)	Sb		
Q.81	` /	the largest atom in the	` /		oms	
	(a)	0	(b)	S		
	(c)	Se	(d)	Te		
Q.82	` /	of the following group	` /		on the averag	ge has the
_		ion energies				5
8	(a)	IA	(b)	IIIA	\	
	(c)	IVA	(d)	VII		
Q.83	` ′	lar orbital theory has	()	,		
Q .35	(a)	the superiority over th	e VB	theory	7	
	(b)	the inferiority over the		•		
	(c)	neither superiority nor		•	over VB theor	ťV
	(-)					· J

	(d)	none of these			
0.84	` '	ond between H–H is			
•	(a)	stronger than the bor	nd betw	een H–C	71
	(b)	weaker than the bone			
	(c)				bond between H–Cl
	(d)	none of these	,, , ,		
0.85	` '	nich of the following me	olecules	s, the val	lue of bond order in
maxim		non or one rone wing m		, 1110 (111	or come order in
	(a)	H2	(1	b) C	02
	` ′	N2	,	d) C	
Q.86 angle	` /	the S-character of hyb	`	,	
ungie	(a)	decreases	(b)	increa	ases
	• •	does not change	(0)	(d)	becomes zero
Q.87	• •	of the causes of reaction	ns is tha	` '	
_		which is of		ic circ sys	
		higher in energy	(b)	lowe	r in energy
	(c)				~ ~
Q.88	• •	ncrease in the bond ene		_	• •
	(a)				
		polarity	` ,	(d)	symmetry
Q.89	• •	oolarity of a molecule is	expres	sed by	•
	(a)	bond strength	_	-	e moment
	(c)	bond length	(d)	shape	e
Q.90	Dipol	le moment of H2O is		-	
	(a)	1.85	(b)	1.82	
	(c)	1.87	(d)	1.83	
		A	NSWE	RS	

Question	1	2	3	4	5
S					
Answers	b	b	b	d	a
Question	6	7	8	9	10

G					
S					1
Answers	a	a	C	C	b
Question	11	12	13	14	15
S					
Answers	b	d	С	b	c
Question	16	17	18	19	20
S					
Answers	a	b	a	d	c
Question	21	22	23	24	25
S					
Answers	a	a	b	d	d
Question	26	27	28	29	30
S					
Answers	c	b	c	b	b
Question	31	32	33	34	35
S					
Answers	b	b	a	С	b
Question	36	37	38	39	40
S					
Answers	С	b	С	d	a
Question	41	42	43	44	45
S					
Answers	С	b	a	b	b
Question	46	47	48	49	50
S					
Answers	d	b	d	d	b
Question	51	52	53	54	55
S					
Answers	b	b	a	b	С
Question	56	57	58	59	60
S					
Answers	С	a	b	a	b
Question	61	62	63	64	65

S					
Answers	d	b	d	a	c
Question	66	67	68	69	70
S					
Answers	С	a	a	b	a
Question	71	72	73	74	75
S					
Answers	С	d	b	b	c
Question	76	77	78	79	80
S					
Answers	С	b	b	С	a
Question	81	82	83	84	85
S					
Answers	d	d	a	b	С
Question	86	87	88	89	90
S					
Answers	a	b	С	b	a