CHAPTER 7

THERMOCHEMISTRY MCQs

	Whic nodynar	ch of the following statement	s is contra	ry to t	he first law of
ther in	(a)	energy can neither be crea	ated nor de	estrove	ed
	(b)	•		•	
amou	` /	ther kinds of energy			1
		in an adiabatic process, th	e work do	ne is i	ndependent of
its pa	, ,	1			1
•		continuous production of	mechanica	al wor	k with out
equiv		mount of heat is possible			
-		change in heat energy of a ch	emical rea	ction	at constant
		and pressure is called			
-	(a)	enthalpy change		(b)	bond
energ	y				
	(c)	heat of sublimation	(d)	inte	ernal energy
chang	ge				
Q.3	For the	he reaction NaOH + HCl \rightarrow	NaCl + H	20, t	he change in
		alled as:			_
	(a)	heat of reaction		(b)	heat of
forma	ation				
	(c)	heat of neutralization	(d)	hea	t of combustion
Q.4	Calo	rie is equivalent to			
	(a)	0.4184 J	(b)	41.3	84 J
	(c)	4.184 J	(d)	418	3.4 J
Q.5	For a	given process, the heat char	ige at pres	sure (qp) and constant
volun	ne (qv)	are related to each other as			
	(a)	qp = qv		(b)	qp < qv
		qp > qv		(d)	qp =

_		t heat change in a chen					
brought about in two or more different ways in one or several steps. It is							
known		TT 1 1	(1.)	т 1)	•		
	, ,	Henry's law		Joule's princip			
	(c)	Hess's law	(d)	Law of conserv	ation of		
energy		2 11 1 2					
_	_	by of neutralisation of	all the st	rong acids and s	trong bases		
has the		alue because					
	(a)	neutralisation leads to			d H2O		
	(b)	0					
		acids always give rise	to H+ io	ons and bases al	ways		
furnish	OH– ic						
	(d)	the net chemical chan	ge invol	ve the combinat	ion of H+		
and OF	I– ions	to form water					
Q.8	If an er	ndothermic reaction is	allowed	to take place ver	ry rapidly		
in the a	ir. The	temperature of the sur	rounding	air			
(a)		s constant	(b)	increase			
(c)	decreas	se	(d)	remain unchang	ged		
Q.9	In endo	othermic reactions, the	heat con	tent of the			
(a)	produc	ets is more than that of	reactant	S			
(b)	reactar	nts is more than that of	product	S			
(c)	both (a	a) and (b)					
Q.10	Hess's	law is also called					
(a)	first la	w of thermodynamics					
(b)	second	l law of thermodynami	cs				
(c)	first la	w of thermochemistry					
(d)	second law of thermochemistry						
Q.11		re – volume work is	•				
(a)	P D v		(b)	Fxd			
(c)	hΔv		(d)	H + p v			
Q.12		energy of molecules i	` /	1			
		(a) rotational		(b)			
	vib	rational energy	<i>-</i> ,	· ,			

	(c)	translational energy		(d)	all of these		
Q.13							
	(a)	1 atm 30oC	r	_	1 atm 0oC		
	(c)	1 atm 25oC		` ,	760 atm 25oC		
Q.14	` ′	nit of enthalpy change i	S	()			
(a)	calorie		(b)	joule			
, ,	volt		(d)	coulo	mb		
, ,		m of all kinds of a syst	` '				
is		J			J		
(a)	vibrati	onal energy	(b)	poten	tial energy		
		energy		_	al energy		
Q.16	An end	dothermic reaction is or					
(a)	enthal	py of reactants and pro	ducts a	re same			
(b)	enthalpy of products is greater than reactant						
(c)	enthal	py of products is lesser	than re	eactants			
(d)	heat is	s evolved from system					
Q.17	Bomb calorimeter is used to determine						
(a)	enthalpy of solution						
(b)	enthalpy of atomization						
(c)	enthalpy of combustion						
(d)	enthalpy of neutralization						
Q.18	Glass calorimeter is used to determine						
	(a) enthalpy of combustion						
	(b) enthalpy of reaction						
	(c) pressure–volume work						
	(d) none of above						
Q.19	Born–Haber cycle is used to calculate						
	(a) enthalpy of combustion						
	(b) lattice energy of ionic camps						
	(c) both a and b						
	(d) none of above						
Q.20	Born–Haber cycle is an application of						
	(a) first law of thermodynamics						

	(c) first law	aw of thermoch	•	cs			
O 21	(d) Hess's law						
Q.21		An exothermic reaction is one in which					
(a)	enthalpy of reactants and products are same						
(b)	heat is absorbed by system enthalpy of products is greater than reactants						
(c) (d)	enthalpy of proc	_					
Q.22	A substance und		-				
(a)	surrounding	(b)	systen		perment		
	state function	(d)	unive				
Q.23		` /		150			
Q.23	(a) heat of s		merery	(b)	heat of atomization		
	(c) heat of combustion						
	` '	(d) heat of formation of H2O					
Q.24	Lattice energy or						
	(a) $+500 \text{ kJ}$		(b)	- 344	· kJ		
	(c) -776 kJ			-411			
Q.25	` '	y of Al2O3	` /				
(a)	it does not catch	•					
(b)	it reacts with CO)2					
	protective layer of oxide cover the surface						
(d)	none of above						
Q.26	Ammonium chlo	oride dissolve	e in wate	er this p	process is		
(a)	endothermic pro	cess (b)	exoth	ermic p	process		
(c)	simple hydration	(d)	none	of abov	ve		
Q.27	First law of them	nodynamics	is repres	sented a	as		
(a)	DE = q + RT	(b)	DΕ	= q + 1	D P		
(c)	$\Delta E = q + \Delta P$	(d)	$\Delta E =$	= q + w	V		
Q.28	Pumping of water	er uphill is					
(a)	spontaneous rea	ction (b)	exothe	ermic re	eaction		
(c)	non–spontaneous reaction						
(d)	endothermic						

Q.29 In exothermic reaction D H is

(a) positive

(b) negative

(c) zero

(d) none of above

ANSWERS

ANDVEND							
Question	1	2	3	4	5		
S							
Answers	D	a	С	С	C		
Question	6	7	8	9	10		
S							
Answers	С	d	С	С	D		
Question	11	12	13	14	15		
S							
Answers	a	d	С	a	d		
Question	16	17	18	19	20		
S							
Answers	b	С	b	b	d		
Question	21	22	23	24	25		
S							
Answers	С	b	d	С	С		
Question	26	27	28	29			
S							
Answers	a	d	b	b			